High-order accurate discontinuous Galerkin simulation tool for cargo hold fires

Mark Lohry Princeton University

> FAA JUP April 2016

- Background
- Discontinuous Galerkin method for buoyancy-driven flow
- Cargo hold sample results
- 3D development

Motivation

- FAA requirement for alarms to go off within 60 seconds of fire ignition.
- Several different detection methods are generally used together, e.g. temperature, smoke/particulate, radiation, optical
- Their effectiveness is determined by the dynamics of a particular fire and their relative position.
- Accurate prediction of fire-induced flow in a cargo hold is a necessary first step to predicting detection capabilities.
- More reliable detection capabilities could potentially reduce false alarms.

B707 cargo geometry

- Experimental and computational data for B707 cargo fires available from work at Sandia and FAA Tech center.
- Current goal is to perform a direct comparison of those results with our new solver.

Figure: B707 cargo hold geometry.

Fire-induced fluid dynamics

- Detailed simulation of the combustion process is expensive and unnecessary; the large scale dynamics are primarily determined by the amount of heat release, its position, and the geometry.
- Commonly used models apply a heat source and input of reaction products (CO, CO2, etc.)

Figure: Flow driven by an enclosed heat source.

Cluttered geometry 2D

- A real fire is unlikely to happen in an empty cargo hold.
- Including some obstructions changes the flowfield considerably.

Figure : t = 20s after ignition.

Simulation challenges

Simulating a single fire case is relatively straightforward, but of limited utility. There are several uncertainties to address:

- Initial position, size, and strength of a fire is unknown.
- Cargo hold geometry varies considerably depending on contents.

Simulation needs:

- Complex geometries: must handle complex boundary conditions accurately.
- Fast: uncertainty quantification will require a large number of simulations.
- Accurate: must accurately simulate vorticity-dominated turbulent flows for transport prediction.

Available tools

FDS: NIST's Fire Dynamics Simulator.

- Pros:
 - Purpose-built for smoke and heat transport from fires using large eddy simulation.
 - Combustion and radiation models.
 - Built-in post-processing tools related to smoke transport.
- Cons:
 - Handles complex boundaries with Cartesian cut cells: inaccurate for anything but rectangles.

OpenFOAM

- Pros:
 - Similar combustion and radiation models to FDS, with additional thermodynamic models.
 - Handles arbitrary body-fitted meshes.
 - Wide array of LES models.
- Cons:
 - Very slow for large cases.

Fluent

- Pros:
 - Well known, full combustion and radiation modeling.
 - Handles arbitrary body-fitted meshes.
 - Wide array of LES models.
- Cons:
 - Commercial

High order accurate CFD

 Even very low intensity fires will have very complex flow phenomena poorly captured by low-order CFD methods.

Figure: Instability of smoke from a cigarette, Perry & Lim, 1978

High order accurate CFD

Order of accuracy in finite differences:

$$\frac{du}{dx} \approx \frac{u(x + \Delta x) - u(x)}{\Delta x} + O(\Delta x)$$

$$\frac{du}{dx} \approx \frac{u(x) - u(x - \Delta x)}{\Delta x} + O(\Delta x)$$

$$\frac{du}{dx} \approx \frac{u(x + \Delta x) - u(x - \Delta x)}{2\Delta x} + O(\Delta x^{2})$$
(1)

- Error scales like $\sim O(\Delta x^n)$ for order n.
- ullet For a 1^{st} order method, halving the grid spacing reduces error by $\sim 1/2$.
- ullet For a 4 th order method, halving the grid spacing reduces error by $\sim 1/16$.

High order accurate CFD

Figure: Generic error vs cost plot, Wang, 2007

Discretization method

For a multi-dimensional conservation law

$$\frac{\partial u(\mathbf{x},t)}{\partial t} + \nabla \cdot \mathbf{f}(u(\mathbf{x},t),\mathbf{x},t) = 0$$
 (2)

approximate $u(\mathbf{x}, t)$ by

$$u(\mathbf{x},t) \approx u_h(\mathbf{x},t) = \sum_{i=1}^{N_p} u_h(\mathbf{x}_i,t) l_i(\mathbf{x}) = \sum_{i=1}^{N_p} \hat{u}_i(t) \psi_i(\mathbf{x})$$
(3)

where $l_i(\mathbf{x})$ is the multidimensional Lagrange interpolating polynomial defined by grid points \mathbf{x}_i , N_p is the number of nodes in the element, and $\psi_i(\mathbf{x})$ is a local polynomial basis.

• Of the two equivalent approximations here, the first is termed *nodal* and the second *modal*. i.e., u_h represents values of u at discrete nodes with a reconstruction based on Lagrange polynomials, and \hat{u}_i represents modes/coefficients for reconstruction with the basis ψ_n .

Discretization method

Substituting the approximation u_h into the conservation law:

$$\frac{\partial u_h}{\partial t} + \nabla \cdot \mathbf{f}_h = 0$$

Integrate with a test function ψ_i , the same as used to represent the polynomial above,

$$\int_{V} \frac{\partial u_{h}}{\partial t} \psi_{j} \ dV + \int_{V} \nabla \cdot \mathbf{f}_{h} \psi_{j} \ dV = 0$$

Integration by parts on the spatial component:

$$\int_{V} \frac{\partial u_{h}}{\partial t} \psi_{j} \ dV - \int_{V} \nabla \psi_{j} \cdot \mathbf{f}_{h} \ dV + \oint_{S} \psi_{j} \mathbf{f}^{*}_{h} \cdot \mathbf{n} \ dS = 0$$

Using the modal representation, $u_h = \sum_{i=1}^{N_p} \hat{u}_i(t) \psi_i(\mathbf{x})$

$$\int_{V} \frac{\partial \hat{u}_{i} \psi_{i}}{\partial t} \psi_{j} \ dV - \int_{V} \nabla \psi_{j} \cdot \hat{\mathbf{f}}_{i} \psi_{i} \ dV + \oint_{S} \psi_{j} \hat{\mathbf{f}}_{i}^{\star} \psi_{i} \cdot \mathbf{n} \ dS = 0$$

which gives the semi-discrete form of the classic modal DG method,

$$\hat{\mathbf{M}}_{ij}\frac{d\hat{u}_{i}}{dt} = \int_{V} \nabla \psi_{j} \cdot \hat{\mathbf{f}}_{i} \psi_{i} \ dV + \oint_{S} \psi_{j} \hat{\mathbf{f}}_{i}^{*} \phi_{i} \cdot \mathbf{n} \ dS$$

Here **M** is the *mass matrix* (identity for orthonormal bases), **n** the vector normal at an element surface, and \mathbf{f}^* is a conservative flux function at interfaces, equivalent to that used in finite volume methods.

Discretization method

The modal coefficients ${\bf 0}$ can always be represented on nodal locations ${\bf u}$ through a change of basis by the $Vandermonde\ matrix$,

$$V\hat{\mathbf{u}} = \mathbf{u}$$

which turns the previous modal method into a nodal method. This code uses unstructured tetrahedral elements in 3D with Legendre-Gauss-Lobatto nodes:

(a) Volume nodes for varying order, Hesthaven (b) N=2 element surfaces; nodes are at line & Warburton.

Discretization method - solving the discretized equations

This ends up with a potentially very large system of ODEs to be solved:

$$\frac{d\mathbf{u}}{dt} = \mathbf{f}(\mathbf{u}, \mathbf{u}', \mathbf{t})$$

Simplest method for integrating this system in time is the explicit (forward) Euler method:

$$\mathbf{u}^{n+1} = \mathbf{u}^n + \Delta t \mathbf{f}(\mathbf{u}, \mathbf{u}', \mathbf{t})^n$$

Unfortunately, explicit time-stepping for high-order DG is stable only for excessively small Δt ,

$$\Delta t = O(\frac{\Delta x}{N^2})$$

where a mesh cell Δx can be very small (boundary layers, small geometric features) and N^2 quickly grows large. For any engineering-scale problem, explicit methods are unfeasible for use.

 This requires the use of implicit time-stepping methods, e.g. 1st order backward Euler:

$$\mathbf{u}^{n+1} = \mathbf{u}^n + \Delta t \mathbf{f}(\mathbf{u}, \mathbf{u}', \mathbf{t})^{n+1}$$

where we now have a set of non-linear equations to solve for u^{n+1} . Typically we use 3rd order or higher time-accurate schemes.

Discretization method - solving the discretized equations

Task is to solve the very large non-linear system at each time step:

$$F(u) = 0$$

Newton's method for this problem derives from a Taylor expansion (Knoll/Keyes 2004):

$$F(u^{k+1}) = F(u^k) + F'(u^k)(u^{k+1} - u^k)$$

resulting in a sequence of linear systems

$$\label{eq:J} J(u^k)\delta u^k = -F(u^k), \quad u^{k+1} = u^k + \delta u^k$$

for the Jacobian J.

- The linear system $J(u^k)\delta u^k = -F(u^k)$ is straighforward enough to write, but for these methods J is a very large sparse matrix which is prohibitively expensive to actually compute and store.
- A mesh of 100,000 4th order cells requires roughly 250GB of memory to store in 64-bit floats.

Discretization method - solving the discretized equations

 A remedy for this is to use a "Jacobian-Free" method based on Krylov subspace iterations (e.g. GMRES, BiCGSTAB), which only require the action of the jacobian in the form of matrix-vector products:

$$\mathbf{K} = \mathsf{span}(\mathbf{J}\delta\mathbf{r},\mathbf{J}^2\delta\mathbf{r},\mathbf{J}^3\delta\mathbf{r},...)$$

which can be approximated by a finite difference:

$$\mathbf{J}\mathbf{v}\approx[\mathbf{F}(\mathbf{u}+\epsilon\mathbf{v})-\mathbf{F}(\mathbf{v})]/\epsilon$$

- This enables a solution method for the non-linear system that doesn't require ever explicitly forming the Jacobian, and instead only requires the evaluation of the RHS of the ODE.
- This is the Jacobian-free Newton-Krylov (JFNK) method:
 - Take a Newton step from the previous iterate.
 - Approximately solve the linear system using a matrix-free Krylov method.
 - Repeat until desired convergence is reached, and move to the next physical time step.
- Current solver uses a damped Newton line-search for the non-linear systems coupled with a GMRES Krylov method for the linear systems.

1D test case

1D Poisson test case to illustrate accuracy vs computational cost:

$$\frac{d^2u}{dx^2} = -20 + a\phi''\cos\phi - a\phi'^2\sin\phi$$

$$a = 0.5, \ \phi(x) = 20\pi x^3$$
(4)

Background

1D test case

Figure: Close up of a single element with a 9th order polynomial basis.

1D test case

- For an ideal numerical method, computational cost is linearly proportional to the number of unknowns (degrees of freedom).
 - e.g. 10 cells with 10 quadrature nodes compared to 50 cells with 2 quadrature nodes.
- The end result is achieving equivalent accuracy with less computational expense or higher accuracy at similar computational expense compared to traditional finite volume methods.

Figure: Error for varying order of accuracy with constant DOFs on 1D test case.

Test case - Isentropic vortex

Test case - Isentropic vortex

- Non-dissipative vorticity convection is essential for these simulations.
- Test case of Yee et al (1999) for a convecting vortex is an exact solution for the compressible Euler equations. Free-stream conditions are

$$\rho=1, u=u_{\infty}, v=v_{\infty}, p=1$$

with an initial perturbation

$$(du, dv) = \frac{\beta}{2\pi} \exp\left(\frac{1 - r^2}{2}\right) \left[-(y - y_0), (x - x_0)\right]$$

$$T = 1 - \frac{(\gamma - 1)\beta^2}{8\gamma\pi^2} \exp(1 - r^2)$$

$$\rho = T^{\frac{1}{\gamma - 1}}$$

$$\rho = \rho^{\gamma}$$

for vortex center (x_0, y_0) , and distance from center $r = \sqrt{(x - x_0)^2 + (y - y_0)^2}$.

Test case - Isentropic vortex - 1st order (c.f. 2nd order FV)

Figure : Vortex transport over 35 characteristic lengths, $O(\Delta x)$.

Test case - Isentropic vortex - 2nd order

Figure : Vortex transport over 35 characteristic lengths, $O(\Delta x^2)$.

Test case - Isentropic vortex - 3rd order

Figure : Vortex transport over 35 characteristic lengths, $O(\Delta x^3)$.

Test case - Isentropic vortex - 4th order

Figure : Vortex transport over 35 characteristic lengths, $O(\Delta x^4)$.

Test case - Isentropic vortex order of accuracy

• L₂ norm of kinetic energy losses for isentropic vortex convection.

Figure : Solution accuracy versus grid refinement, for levels h, h/2, and h/4.

Uncertainy Quantification for Cargo Hold Fires, DeGennaro, Lohry, Martinelli, & Rowley, 57th AIAA Structures, Structural Dynamics, and Materials Conference, San Diego CA, Jan. 2016.

- Two objectives of this study:
 - Assess the feasibility of using DG methods for buoyancy-driven flows.
 - Use uncertainty quantification techniques to analyze statistical variations in flows.

- The mock fire sources were chosen to vary based on 2 parameters: fire strength and location.
 - Fire location was chosen to vary between the centerline and the far right wall, exploiting the symmetry of the geometry.
 - Fire strength was chosen to vary between a weak, slowly rising plume and a faster rising plume.
- \bullet 5 \times 5 parameter sweep performed for these 2 parameters.
- Simulations performed with 3rd order elements (10 nodes per 2D cell) with approximately 1,500 triangular cells, or 15,000 nodes. All boundary conditions are isothermal non-slip walls. Time integration by 3rd order backward difference formula (BDF).

Figure: Flow driven by a heat source in a 2D cross-section. Colormap shown is temperature normalized by the initial bulk temperature.

• Time evolution of temperature field:

Figure : Temperature field time evolution for $T_s = 1.486$, $x_s = 0.024$ case.

Variation of fire source location.

Temperature fields for $T_s = 1.486$ source at the 5 source locations, time t = 10s after start up.

3D development

Variation of fire source temperature:

Discontinuous Galerkin method for buoyancy-driven flow

Figure: Temperature fields at $x_s = 0.024 m$ for the 5 values of temperature source, time t = 10s after startup.

Figure: Time-averaged ceiling temperature distributions collected at the 25 quadrature nodes. Each subtitle corresponds to the parameter pair $(x_{\mathcal{S}}, T_{\mathcal{S}})$.

Background Discontinuous Galerkin method for buoyancy-driven flow Cargo hold sample results 3D development

3D isentropic vortex

• Current work is on verification and validation of the full 3D problem.

Background

3D isentropic vortex

Video

 Standard test case for viscous CFD. The "lid" of the cavity drives circulation through viscous entrainment similar to the buoyancy-driven instabilities.

Figure: 354 cells 3D, 6x6x1 mesh.

Figure: 1st order, 354 cells.

Figure: 2nd order, 354 cells.

Figure: 3rd order, 354 cells.

Background

Figure: 4th order, 354 cells.

Background

Figure : 3D DG solution with 354 cells c.f. Bruneau & Saad (2006), 1024×1024 grid.

Ongoing solver development

2D work completed:

- Established that high-order-accurate discontinuous Galerkin methods can be used for simulating buoyancy-driven flows such as those seen in cargo hold fires, using unstructured meshes suitable for arbitrary geometries.
- Demonstrated the use of these simulations in an uncertainty quantification framework to aid in fire sensor placement.

Current work is on extending this to a 3D solver for full cargo hold simulation:

- Functioning:
 - 3D unstructured flow solver, spatial discretization with arbitrary order of accuracy.
 - Parallel scaling.
 - Jacobian-Free Newton-Krylov for solution of non-linear algebra.
 - Implicit time integration for high order temporal accuracy and large time step stability.
 - · 3D viscous effects
- Work in progress:
 - Full testing of 3D buoyancy-driven effects.
 - Implementation of Large Eddy Simulation (LES) models.
 - Full cargo hold simulations for validation.
 - Direct quantitative comparisons between OpenFOAM/FDS and this DG work for validation.

